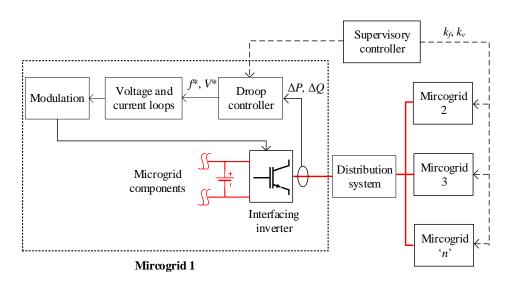
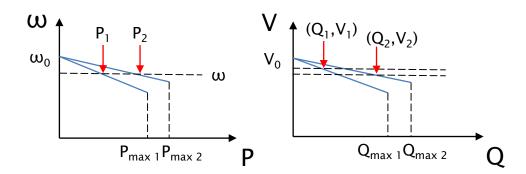
Impact of supervisory control inputs in multiinverter distribution systems

Gurupraanesh Raman, Hui Xun Chiang, Kawsar Ali and Jimmy Peng

Department of Electrical and Computer Engineering Email: gurupraanesh@u.nus.edu



Presentation summary

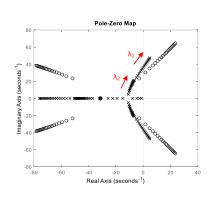

- Description of multi-microgrid scenario
- Motivation
- Proposed sensitivity criterion
- Simulation results
- Hardware verification

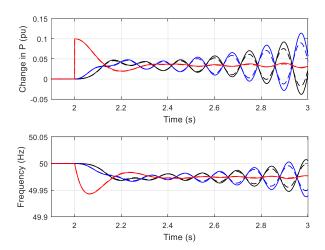
Multi-microgrid scenario

- Future distribution viewed as a collection of MGs all connected to the wiring infrastructure
- Each interfacing inverter is operated with droop control

$$\omega = \omega_0 - k_\omega (P - P_0)$$

$$V = V_0 - k_v(Q - Q_0)$$

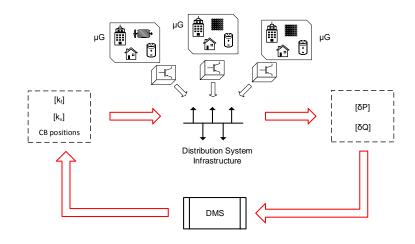

Small-signal stability


$$\Delta f = -k_f \Delta P = -\left(\frac{\omega_c}{s + \omega_c}\right) k_f \Delta P_{meas}$$
$$\Delta V = -k_v \Delta Q = -\left(\frac{\omega_c}{s + \omega_c}\right) k_v \Delta Q_{meas}$$

$$2\pi \,\Delta f = \frac{d}{dt} \Delta \delta$$

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} \frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial V} \\ \frac{\partial Q}{\partial \delta} & \frac{\partial Q}{\partial V} \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta V \end{bmatrix}$$

- Small-signal instability caused by interaction between different droop controllers through the network lines
- Damping of critical modes depend on:
 - 1. Network impedances
 - 2. Inverter droop gains
 - 3. Number of inverters



Possibility of undamped power flows!

Motivation

- Some degree of communication vital to maintain global stability
 - Need for supervisory control (esp. brownfield projects)
- Node vulnerability to be considered during design of communication infrastructure
- How to quantify node "importance"?
 - View system from "supervisory control" perspective, not "disturbance rejection" perspective
 - Equivalently: how to quantify "sensitivity" of system damping to droop coefficients?
- Potential applications:
 - Planning of communication network
 - Devising contingency response schemes

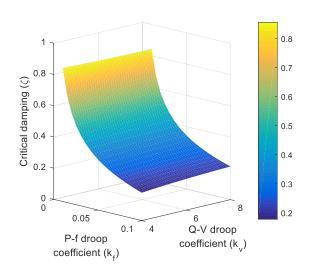
MMG system with supervisory control

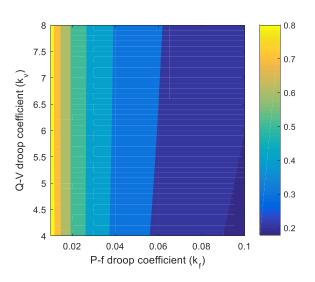
Conventional methods

- Calculation of eigenvectors and participation factors
 - $O(n^3)$ complexity of EV calculation
 - Impractical to evaluate in real-time for large systems (Nodes>1000)
- Online methods should be:
 - Computationally inexpensive
 - Scalable to number of nodes

$$\dot{\delta\theta} = \omega - \omega_0$$

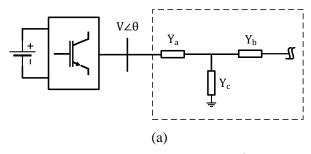
$$\frac{1}{\omega_c}\frac{d\omega}{dt} = -\delta\omega - k_f \delta F$$

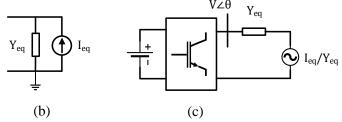

$$\frac{1}{\omega_c}\frac{dV}{dt} = -\delta V - k_v \delta Q$$


$$\begin{bmatrix} \delta P \\ \delta Q \end{bmatrix} = \begin{bmatrix} B & G \\ -G & B \end{bmatrix} \begin{bmatrix} \delta \theta \\ \delta V \end{bmatrix}$$

Node sensitivity to supervisory control inputs

- Droop coefficients of some inverters have higher influence on critical mode damping
- Assumption:
 - P-f droop coefficient has much more influence than Q-V droop coefficient on critical-mode damping




Derivation of sensitivity- single inverter case

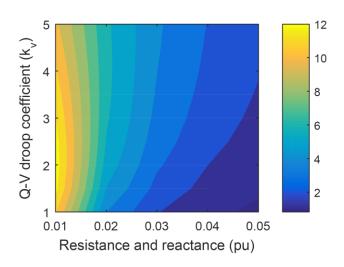
- 1. Start with f and V droop equations
- 2. Incorporate power flow equations
- 3. Approximation of solution for voltages
- 4. Derive of angle dynamics
- 5. Determine sensitivity of critical mode damping to supervisory control input

Sensitivity for multi-inverter case

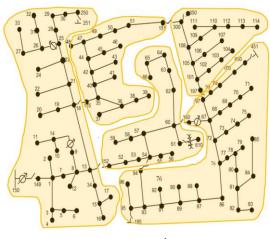
- (a) Inverter connected to generic MMG network
- (b) Network Norton equivalent
- (c) Equivalent MMG model

$$\frac{\partial D}{\partial k_f} = -\frac{k_v G^2}{(1 + k_v B)^2}$$

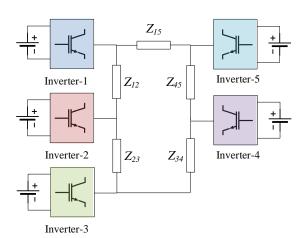
- Replace G and -B with real and imaginary parts of Y_{ea}
- Equivalent admittance for nth inverter:

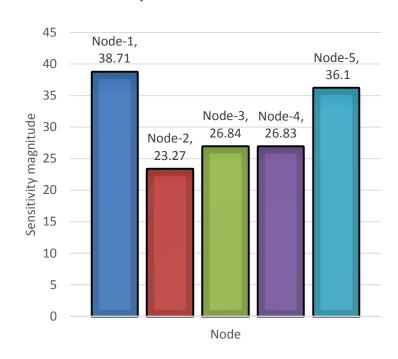

$$Y_{eq} = Y_{bus}(n, n)$$

Properties of sensitivity

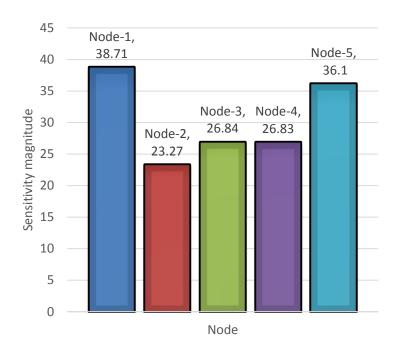

$$\frac{\partial D}{\partial k_f} = -\frac{k_v G^2}{(1 + k_v B)^2}$$

- 1. Sensitivity of one node is independent of other node parameters
- 2. Computational complexity is small
- 3. Lower the interconnecting admittance, lower the sensitivity




Demonstration-IEEE 123 bus system

V_{base}=4.16kV


$$\frac{\partial D}{\partial k_f} = -\frac{k_v G^2}{(1 + k_v B)^2}$$

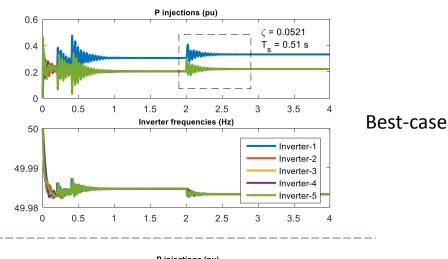
Node sensitivity order: 1>5>3>4>2

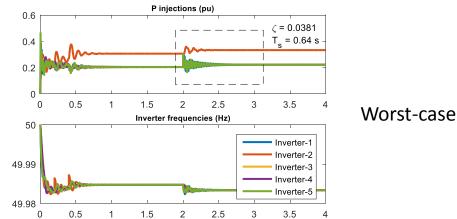
Sensitivity verification

Node	Damping ratio, ζ	$\Delta \zeta$	Sensitivity rank
Initial	0.0380		
1	0.0328	-0.0052	1
2	0.0380	-0.0000	5
3	0.0379	-0.0001	3
4	0.0379	-0.0001	4
5	0.0337	-0.0043	2

Node sensitivity order: 1>5>3>4>2

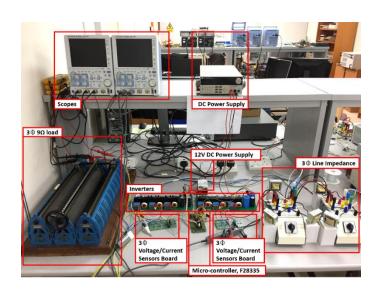
Supervisory input at the more sensitive nodes have higher impact on the damping!

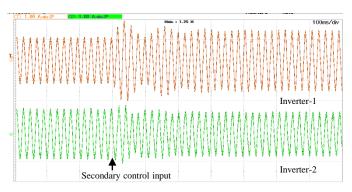


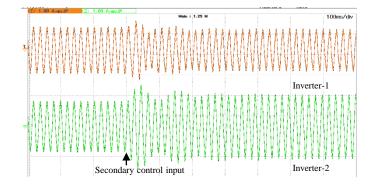

Sensitivity implication

Start with kf=0.15% and kv=5%. Initial ζ =3.8% Desired ζ =5.0%

Node sensitivity order: 1>3>4>5>2


Apply supervisory control inputs to the most and least sensitive node to achieve the above objective.




Sensitivity verification

	k _f (%)	k _v (%)	Damping ratio, ζ	Settling time, t _s (s)
Initial	10, 10	2, 5	0.0737	0.442
Perturb Node-1	5, 10	2, 5	0.0862	0.595
Perturb Node-2	10, 5	2, 5	0.0873	0.499

(a) Perturb less sensitive node (Node-1)

(b) Perturb more sensitive node (Node-2)

Supervisory input at the more sensitive nodes have higher impact on the damping!

Summary

- Novel sensitivity criterion was proposed
- Sensitivity measure was demonstrated with practical test cases
- Key strengths:
 - Wide applicability to practical R/X
 - Scalable to network size
 - Reduced computational complexity compared to numerical sensitivity analysis
- Most vulnerable communication lines can be designed to improve the robustness of the distribution system
- Optimal contingency response sequence can be determined using sensitivity order