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* Description of multi-microgrid scenario
* Motivation

* Proposed sensitivity criterion

* Simulation results

* Hardware verification
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Small-signal stability
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Imaginary Axis

* Small-signal instability caused by
interaction between different droop
controllers through the network lines
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Possibility of undamped power flows!
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 Some degree of communication vital to
maintain global stability

— Need for supervisory control (esp. brownfield
projects)

* Node vulnerability to be considered
during design of communication
infrastructure
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Distribution System
Infrastructure

- View system from “supervisory control”
perspective, not “disturbance rejection” ' bMS
perspective

— Equivalently: how to quantify “sensitivity” of
system damping to droop coefficients?

MMG system with supervisory control

* Potential applications:
- Planning of communication network
— Devising contingency response schemes
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e (Calculation of eigenvectors and 00 = w — wg

participation factors
- O(n3) complexity of EV calculation id_w = —Sw — kf5P

- Impractical to evaluate in real-time for w dt
large systems (Nodes>1000)
LAV sy —k 5Q
w, dt v

* Online methods should be:
- Computationally inexpensive

— Scalable to number of nodes 6P B G1[66
LSQ - [—G B] [51/]
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é% NUS Node sensitivity to supervisory
control inputs

* Droop coefficients of some inverters have higher influence on critical mode
damping

* Assumption:
- P-f droop coefficient has much more influence than Q-V droop coefficient on critical-mode

damping
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Start with f and V droop equations
Incorporate power flow equations
Approximation of solution for voltages
Derive of angle dynamics

vk w e

Determine sensitivity of critical mode damping to supervisory control input
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(a) Inverter connected to generic MMG network
(b) Network Norton equivalent
(c) Equivalent MMG model
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Replace G and -B with real and imaginary
parts of ¥,

qu =Ypus(n, n)
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1.  Sensitivity of one node is independent of other node parameters
2.  Computational complexity is small
3. Lower the interconnecting admittance, lower the sensitivity
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Node sensitivity order: 1>5>3>4>2

Supervisory input at the more
sensitive nodes have higher impact on
the damping!
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Sensitivity implication

Start with kf=0.15% and kv=5%.
Initial C=3.8%
Desired C=5.0%

Apply supervisory control inputs to
the most and least sensitive node to

achieve the above objective.
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(b) Perturb more sensitive node (Node-2)
Supervisory input at the more sensitive
nodes have higher impact on the damping!
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Novel sensitivity criterion was proposed
Sensitivity measure was demonstrated with practical test cases

Key strengths:

—  Wide applicability to practical R/X

—  Scalable to network size

—  Reduced computational complexity compared to numerical sensitivity analysis

Most vulnerable communication lines can be designed to improve the robustness
of the distribution system

Optimal contingency response sequence can be determined using sensitivity order
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