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Presentation summary

• Description of multi-microgrid scenario

• Motivation

• Proposed sensitivity criterion

• Simulation results

• Hardware verification
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Multi-microgrid scenario

• Future distribution viewed as a 
collection of MGs all connected to the 
wiring infrastructure

• Each interfacing inverter is operated 
with droop control

𝜔 = 𝜔0 − 𝑘𝜔 𝑃 − 𝑃0

𝑉 = 𝑉0 − 𝑘𝑣 𝑄 − 𝑄0
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Small-signal stability

• Small-signal instability caused by 
interaction between different droop 
controllers through the network lines

• Damping of critical modes depend on:

1. Network impedances

2. Inverter droop gains

3. Number of inverters

 

∆𝑓 = −𝑘𝑓∆𝑃= −
𝜔𝑐

𝑠 + 𝜔𝑐
𝑘𝑓∆𝑃𝑚𝑒𝑎𝑠

∆𝑉 = −𝑘𝑣∆𝑄= −
𝜔𝑐

𝑠 + 𝜔𝑐
𝑘𝑣∆𝑄𝑚𝑒𝑎𝑠

2𝜋 ∆𝑓 =
𝑑

𝑑𝑡
∆𝛿
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Possibility of undamped power flows!
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Motivation

• Some degree of communication vital to 
maintain global stability
– Need for supervisory control (esp. brownfield 

projects)

• Node vulnerability to be considered 
during design of communication 
infrastructure

• How to quantify node “importance”?
– View system from “supervisory control” 

perspective, not “disturbance rejection” 
perspective

– Equivalently: how to quantify “sensitivity” of 
system damping to droop coefficients?

• Potential applications:
– Planning of communication network

– Devising contingency response schemes
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Conventional methods

• Calculation of eigenvectors and 
participation factors
– O(n3) complexity of EV calculation

– Impractical to evaluate in real-time for 
large systems (Nodes>1000)

• Online methods should be:
– Computationally inexpensive

– Scalable to number of nodes
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Node sensitivity to supervisory 
control inputs

• Droop coefficients of some inverters have higher influence on critical mode 
damping

• Assumption:
– P-f droop coefficient has much more influence than Q-V droop coefficient on critical-mode 

damping
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Derivation of sensitivity- single 
inverter case

1. Start with f and V droop equations

2. Incorporate power flow equations

3. Approximation of solution for voltages

4. Derive of angle dynamics

5. Determine sensitivity of critical mode damping to supervisory control input
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• Replace G and -B with real and imaginary 
parts of Yeq

• Equivalent admittance for nth inverter:

𝑌𝑒𝑞=𝑌𝑏𝑢𝑠(𝑛, 𝑛)

Sensitivity for multi-inverter case
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Properties of sensitivity

1. Sensitivity of one node is independent of other node parameters

2. Computational complexity is small

3. Lower the interconnecting admittance, lower the sensitivity
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Demonstration- IEEE 123 bus system
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Node sensitivity order: 1>5>3>4>2

Node-1, 
38.71

Node-2, 
23.27

Node-3, 
26.84

Node-4, 
26.83

Node-5,
36.1

0

5

10

15

20

25

30

35

40

45

Node

Se
n

si
ti

vi
ty

 m
ag

n
it

u
d

e
 

Z12

Z23

Z15

Inverter-1

Inverter-2

Inverter-3

Z45

Z34

Inverter-5

Inverter-4

𝜕𝐷

𝜕𝑘𝑓
= −

𝑘𝑣𝐺
2

1 + 𝑘𝑣𝐵
2

Vbase=4.16kV



Insert your 
organization’s 
logo here

Sensitivity verification
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Node sensitivity order: 1>5>3>4>2
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Supervisory input at the more 
sensitive nodes have higher impact on 
the damping!
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Sensitivity implication
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Best-case

Worst-case

Start with kf=0.15% and kv=5%. 
Initial Ϛ=3.8%
Desired Ϛ=5.0%

Node sensitivity order: 1>3>4>5>2

Apply supervisory control inputs to 
the most and least sensitive node to 
achieve the above objective. 
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Sensitivity verification
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Secondary control input

Inverter-1

Inverter-2

Secondary control input

Inverter-1

Inverter-2

kf (%) kv (%) Damping
ratio, ζ

Settling 
time, ts (s)

Initial 10, 10 2, 5 0.0737 0.442

Perturb 
Node-1

5, 10 2, 5 0.0862 0.595

Perturb 
Node-2

10, 5 2, 5 0.0873 0.499

(b) Perturb more sensitive node (Node-2)

(a) Perturb less sensitive node (Node-1)

Supervisory input at the more sensitive 
nodes have higher impact on the damping!
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Summary

• Novel sensitivity criterion was proposed

• Sensitivity measure was demonstrated with practical test cases

• Key strengths: 

– Wide applicability to practical R/X

– Scalable to network size

– Reduced computational complexity compared to numerical sensitivity analysis

• Most vulnerable communication lines can be designed to improve the robustness 
of the distribution system

• Optimal contingency response sequence can be determined using sensitivity order
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