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ABSTRACT 

In islanded systems with droop-controlled sources, the droop coefficients need to be 

tuned in real-time using supervisory control to maintain asymptotic stability. In 

contrast to offline tuning methods, online domain-of-stability estimation yields non-

conservative droop gains in real-time, ensuring good power sharing performance as 

the operating point varies. The challenge in the conventional online domain-of-

stability estimation process is its unscalability and high computational complexity. In 

this paper, an efficient alternative using conditional Generative Adversarial Networks 

(cGANs) is described. We demonstrate that the notion of power system stability can 

be learned by such deep neural networks, and that they can offer a scalable alternative 

to conventional domain-of-stability estimation methods in islanded distribution 

systems. The implementation of cGANs-based stability assessment is described for an 

LV distribution test case and its advantages demonstrated. 

Key words: conditional GANs (Generative Adversarial Networks), distribution 

system stability, supervisory control. 
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CHAPTER 1: INTRODUCTION 

1.1  Background 

1.1.1   Difficulties of stability problem in small-signal system 

In distribution networks that are tied to weak grids or islanded, decentralized power 

sharing mechanisms are implemented for forming the grid. The most common control 

strategy is the P - f=Q - V droop control where the voltage and frequency of each 

source varies as per a linear law based on the real and reactive power output of that 

source. Such a control strategy could manifest poorly damped poles for some values 

of the droop parameters [1], and the distribution system operator’s fast response to 

these poorly damped power flows is imperative to the continuing operation of the grid.  

 

The small-signal stability of the system is dependent on the network topology, loading, 

generation and the power-sharing controller parameters. Before the system begins 

operation, offline tuning is performed to obtain the optimal values of the droop 

coefficients while considering constraints such as maximum steady-state voltage and 

frequency deviation, and the desired power outputs of each source. However, the 

generation levels can change frequently at the distribution level with the presence of 

highly variable renewable generation [2]. Moreover, the network configuration could 

also be significantly affected by tap-changes, line switching, and faults. To assess the 

stability of such grids in real time, the system eigenvalues must be examined based on 

the real-time conditions. 

 

1.1.2   Conventional Approaches for small-signal system 

To maintain real-time stability, the first approach is to use the nominal system 

configuration to design the droop values in an offline manner while allowing a 

sufficient margin from the instability limit. The expectation here is that the system will 
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remain within the stable region as the operating point changes. However, such a 

conservative droop selection will lead to a poor power-sharing performance when 

there is significant deviation from the assumed operating point [3].  

 

An alternative approach proposed in [4] effects real-time corrections on the droop 

coefficients to achieve fewer conservative settings. This involves the evaluation of a 

global-stability indicator, on which the selected droop values will depend. While this 

approach is more advantageous than offline tuning, it does not actually determine the 

domain-of-stability (i.e., the hyperspace of all droop gains that yield stable behavior) 

in real-time, and therefore still yields somewhat conservative results. If the full 

domain-of-stability were to be known, the appropriate droop selection can be made 

with the required stability margin. 

 

Conventionally, the determination of the stability region entails the evaluation of 

eigenvalues for various candidate droop settings, and then the stability classification 

of these points. However, the stability assessment process has a complexity of O(𝑛3) 

based on the number of states n (detailed models contain 5 states per source) [5]. 

Consequently, the stability region determination could take several tens of seconds or 

minutes for large systems during which time low-inertia systems could well face 

tripping of lines/sources. An alternative approach would be to develop an a priori 

database of various possible system configurations with the domain-of-stability for 

each case. While this may address the computation time issue with online eigenvalue 

evaluation, it raises other concerns pertaining to the development of an exhaustive 

database, its non-adaptability to changes in configuration, and the time to identify the 

relevant database entry for a given real-time configuration 

 

Thus far, the use of deep learning in multi-inverter stability has been in learning time-

domain behavior for generating black-box models (most recently, [6]). In contrast, the 

focus of this work is on obtaining the stable hyperspace of the control parameters. 

 

1.1.3   The application of GANs in some other areas 
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In recent years, with the development of machine learning and data science, more and 

more researchers hope to solve the problem by neural network [7]. GANs is a good 

model to create analogy thing similar to the original data. At the beginning, GANs is 

always applied in image area. However, in recent years, the approach of GANs is also 

implemented in some other research area such as physics synthesis [8], which applies 

Location-Aware Generative Adversarial Networks (LAGAN) to produce the jet image. 

 

Besides Physics area, GANs model is also used in medical area. For example, the 

cGANs help doctors to generate intraoperative organ motion models [9]. In this way, 

we also want to implement the GANs model into power system to solve the problem. 

 

1.2   Objectives 

This paper will propose the use of Generative Adversarial Networks (GANs), 

specifically, conditional GANs (cGANs) as a scalable alternative to the above 

traditional tuning technique. This study is a novel demonstration of the ability of 

cGANs to learn the notion of small-signal stability, and determine the complete 

stability region in real-time for the present distribution network configuration. As a 

result, this guarantees stable operation while enabling non-conservative droop settings 

to be selected so as to achieve an optimal power-sharing performance. The cGANs is 

trained offline, and while online, the computational time for generating the stability 

region is demonstrated to be significantly lower than that for the traditional tuning 

method. It will also be demonstrated that the cGANs training is scalable to the number 

of system configurations in the training set, demonstrating that the proposed cGANs 

approach will be comparable or better than the look-up-table approach. 

 

1.3   Report Organization  

This report begins with an introduction of processing stable data in Chapter 2. Chapter 

3 review the concepts of GANs and cGANs for this project, with implementation 

details of each subsystem and components. Chapter 4 provides the result of GANs and 
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cGANs. Chapter 5 analyze the data to prove the strength of GANs compared with 

conventional method and also show the scalability of GANs. In Chapter 6, conclude 

the whole work of this project and introduce some recommendations of improvements 

for future application of GANs in power system.  
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CHAPTER 2: PRELIMINARIES 

In this work, each source is assumed to be governed by the conventional droop 

equations as per (1). However, the proposed method is equally applicable to more 

sophisticated droop control strategies as well. 

𝑓 =  𝑓0 − 𝑘𝑓 [
𝜔𝑐

𝑠 + 𝜔𝑐
] (𝑃 − 𝑃0) 

𝑉 =  𝑉0 − 𝑘𝑣 [
𝜔𝑐

𝑠+𝜔𝑐
] (𝑄 − 𝑄0)                                          (1) 

where f, V, P and Q denote the frequency, terminal voltage magnitude, real and 

reactive power injections of each source, and the subscript ‘0’ indicates their respective 

nominal values. Further, 𝑘𝑓  and  𝑘𝑣  are the 𝑃 − 𝑓  and 𝑄 − 𝑉  droop coefficients 

respectively, and  𝜔𝑐  is the first-order power filter corner frequency. While the 

conventional droop is taken up here for simplicity, the proposed method is equally 

applicable to more sophisticated droop control strategies such as opposite or hybrid 

droop [10]. 

 

The eigenvalues of the distribution system with several droop-controlled sources can 

be obtained as the solution of: 

[𝐴 + 𝑠 ∙ 𝐵 + 𝑠2 ∙ 𝐶 + 𝑠3 ∙ 𝐷 + 𝑠4 ∙ 𝐸][∆𝜃
∆𝑉

] = [0
0
]                        (2) 

The coefficient matrices are as follows: 

𝐴 = [
−(𝜌2 + 1) ∙ 𝐵 𝜌 ∙ (𝜌2 + 1) ∙ 𝐵

−1 ∙ 𝜌 ∙ (𝜌2 + 1) ∙ 𝐵 (𝜌2 + 1) ∙ (−𝐵 + 𝐿𝑞)
] 

𝐵 = 

[
 
 
 
 (𝜌2 + 1) ∙ 𝐿𝑞 (𝜌2 + 1) ∙

𝐵

𝜔0

−1 ∙ (𝜌2 + 1) ∙
𝐵

𝜔0
((𝜌2 + 1) ∙ 𝑇 + 2 ∙

𝜌

𝜔0
) ∙ 𝐿𝑞

]
 
 
 
 

 

𝐶 = 

[
 
 
 
 ((𝜌2 + 1) ∙ 𝑇 + 2 ∙

𝜌

𝜔0
) ∙ 𝐿𝑝 0

0 (
1

𝜔0
2 + 2 ∙

𝜌 ∙ 𝑇

𝜔0
) ∙ 𝐿𝑞

]
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𝐷 =

[
 
 
 
 (

1

𝜔0
2 + 2 ∙

𝜌 ∙ 𝑇

𝜔0
) ∙ 𝐿𝑝 0

0
𝑇

𝜔0
2 ∙ 𝐿𝑞

]
 
 
 
 

 

𝐸 = [

𝑇

𝜔0
2 ∙ 𝐿𝑝 0

0 0

] 

Here, 𝐺 +  𝑗𝐵 =  𝑌𝑏𝑢𝑠 , the bus-admittance matrix of the distribution network. 𝐿𝑝 , 

𝐿𝑞are diagonal matrices containing the inverse of 𝑘 𝑓and 𝑘𝑣  respectively of all the 

sources. Further, 𝜌 is the 𝑅/𝑋 ratio of the system, 𝜔0, the nominal power frequency 

(100π rad/s), and 𝑇 = 1/𝜔𝑐.  To determine the stability region numerically, a 

hyperspace of possible droop coefficients is first conceptualized, and the stability of 

each point is determined to obtain the full domain-of-stability. A droop setting is 

considered stable if the real part of all eigenvalues is negative. The following figure 

(Figure 1) shows the theoretical region.  

 

 

Figure 1 Theoretical stable region 
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CHAPTER 3: DOMAIN OF STABILITY 

CHARACTERIZATION USING GANS 

In this chapter, we mainly introduce the concept of GANs and cGANs. Meanwhile, the 

combination of GANs and power system will be stated in this section. We also propose 

one stopping criteria for this approach. 

3.1   Brief review of GANs and conditional GANs 

GANs have been used in the image processing domain to create synthetic images from 

a training set of several images, for example, pictures of synthetic human faces, birds, 

etc. For achieving this, a GANs consists of two neural networks - a Generator and a 

Discriminator. The former generates new data sets, and the latter judges how similar 

the generated data set is to the training data (real data) [11]. In the GANs framework, 

the two networks compete to improve their own model accuracy. 

 

Let 𝑥 be the actual data with a distribution 𝑝𝑑𝑎𝑡𝑎. The Generator is fed noise data 𝑧, 

which maps it to 𝐺(𝑧). The Discriminator, when fed an input 𝑥, produces a single scalar 

𝐷(𝑧) that represents the probability that 𝑥 came from the training data rather than from 

the Generator. The output of the Generator is fed to the Discriminator, and the networks 

are trained simultaneously. During the course of the training steps, the goal is to 

maximize the accuracy of the Discriminator, while minimizing 𝑙𝑜𝑔(1 −  𝐷(𝐺(𝑧))). 

This is equivalent to the minimax game with value function 𝑉 (𝐷;  𝐺) given by: 

       min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) =  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]        (3) 

At the end of the training process, the distribution of the training data 𝑝𝑔 becomes equal 

to 𝑝𝑑𝑎𝑡𝑎. The Discriminator is therefore unable to differentiate between the real data 

and the generated data, i.e., 𝐷(𝑥)  =  0.5. 

 

The flow chart of GANs in this project is shown in the following picture. 
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Figure 2 flowchart of GANs 

 

Conditional GANs (cGANs) entails an additional input y to both G and D [12]. The 

input c can be used to impose a condition on the generated data samples, for example 

to generate pictures of smiling faces rather than just faces. 

   min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) =  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥|𝑦)] + 𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧|𝑦)))]    (4) 

 

In this project the label is the parameter of each different power systems.  

 

The relationship between the parameters and the predicted number should be existed. 

But sometimes we could not solve the complex problem. Adding the parameters into 

the computation of neural networks to instruct the neural nets could obtain the predicted 

number of the specified system. The parameters of each equation are fixed. We can 

reshape the parameters into one vector to be our label for our predicted number. 

 



Generative Adversarial Networks for Evaluating Power Grid Stability                          Chapter 3 

 

9  

Especially when the number of systems is more than one and we also want to solve 

them at same time, the simple GANs could not be administrated freely. But the cGANs 

could satisfy us. Using the G and B to be a label is a good way to teach the training of 

cGANs. The flow chart of cGANs in this project is shown in the following picture 

(Figure 3).  

 

Figure 3 Flowchart of conditional GANs 

 

3.2   Application to distribution system stability studies 

Since GANs in general have the capability to generate new data sets with similar 

characteristics as the training data, this concept can be usefully leveraged for power 

system stability characterization. The system of interest is a weak distribution system 

with droop-controlled sources, and the data pertaining to the stability studies include 

the network parameters and droop coefficients. The principle behind using GANs for 

this application is thus- when trained with several possible configurations of stable 

systems (in the sense of small signal stability), the GANs will generate additional stable 
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configurations, thus generating the stability hyperspace for a mixture of network 

configurations. Instead, when a cGANs is used with the conditional input as the present 

network configuration, then the cGANs output will directly provide the stable control 

parameters for that particular network topology 

 

The objective is to obtain the range of values of droop coefficients for stable operation 

as the network parameters change in real time. To this end, by providing a range of 

noise data inputs to the trained cGANs with a fixed network configuration as 

conditional input, the whole stability domain for that configuration can be populated by 

collating all the obtained stable droop settings. Notably, since the training of the cGANs 

will be performed offline, the real-time generation of the stability domain can be 

obtained relatively faster compared to the conventional method, as will be demonstrated 

in the following subsections. 

 

3.3   Implementation details 

Online stability region determination using cGANs is demonstrated on a 4.16kV, 50 Hz 

ring distribution system consisting of 5 sources shown in Figure 4 and the network 

impedances are presented in Table I. The power rating of each identical source is 1 

MVA, and the nominal droop coefficients are 𝑘𝑓 = 0.15% and 𝑘𝑣 = 5.0%. The power 

filter cut-off frequency 𝜔𝑐  is taken as 31.41 rad/s. Let 𝑌𝑏𝑢𝑠 =  𝑌 ∠𝜃  be the bus 

admittance matrix of the distribution network, and 𝑘𝑓 and 𝑘𝑣 be vectors including the 

droop coefficients of all the sources. The training datasets are created in MATLAB, 

with each dataset consisting of  𝑌, 𝜃, 𝑘𝑓 and 𝑘𝑣 . Together, these four parameters 

determine the stability of the system. Each dataset consists of the elements of the above 

2 matrices, and 2 vectors, whose elements are concatenated to obtain one single vector; 

the positional information is not recognized by non-convolutional neural networks.  
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Figure 4 Schematic of 5-inverter ring-main distribution system 

While generating the datasets, as these matrices/vectors have elements having different 

ranges of magnitudes, these are scaled by dividing with the largest element of the 

respective matrices, bringing their magnitudes to [0; 1]. This scaling factor is uniformly 

used for all the data sets (i.e., different power system configurations), guaranteeing that 

due importance is given to the quantities with smaller magnitudes during the training 

process. The inverse is multiplied to regain the true physical parameters from the GANs 

output. 

Table 1 Network Parameters of Test System 

Impedance Value (𝛀) 

𝒁𝟏𝟐 0.08 + 𝑗0.08 

𝒁𝟐𝟑 0.15 + 𝑗0.15 

𝒁𝟑𝟒 0.05 + 𝑗0.05 

𝒁𝟒𝟓 0.15 + 𝑗0.15 

𝒁𝟏𝟓 0.02 + 𝑗0.02 

 

For each of the following experiments, the training data is fed to GANs realized using 

the Pytorch package, and executed on a PC running 64-bit Windows-10 OS, with an i7-

8550 processor and 8GB RAM. The Generator and Discriminator entail a fully 
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connected neural network with 4 and 3 layers respectively. The activation function for 

all layers is LeakyRelu, except the Discriminator’s output layer, which is the sigmoid 

function. Further, every layer of the Generator is applied with batch normalization. For 

discriminator, we calculate the loss between discrimination percentage of real data and 

1, which we call them ‘real loss’. And we also calculate the loss between discrimination 

percentage of fake data from last epoch’s generator and 0, which we call them ‘fake 

loss’. For Generator we calculate the loss between discrimination percentage of fake 

data from last epoch’s generator and 1, which we call them ‘G loss’. 

 

For each training epoch, we do small Batch training and in neural network of generator 

we do batch normalization. In this way, we could tune the direction more times in one 

epoch to accelerate the optimization procession. Besides we do not have to worry more 

about the parameter learning rate. [13]. 

 

The output datasets of the GANs correspond to a physical system and their parameters 

are expected to be similar to that of the input data sets. Thus, the follow stopping 

criterion is used for the training process: 

𝑑𝑐 = max
𝑧

(𝑥𝑓 − 𝐺(𝑧)𝑓) <  𝜖 

where 𝑑𝑐 is the Chebyshev distance, and 𝜖 is the allowable deviation of the generated 

data with the real data. As the data matrices 𝑌 , 𝜃, 𝑘𝑓  and 𝑘𝑣 have already been scaled 

to [0, 1], 𝜖 can be uniformly be used for all, and this value is selected as 0.05 for this 

work. Threshold value that we consider is the proportion of error in one real parameter 

number, which means the generator producing the number between 0 and 1 as a percent. 

In this way, we could centre the data value and accelerate the training procession [14]. 
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CHAPTER 4: EXPERIMENTS OF GANS 

AND CONDITIONAL GANS IN POWER 

SYSTEM 

After review of GANs and cGANs, because of the similarity of goals in our problem, 

we could utilize them in generating parameters of 𝑘𝑣 and 𝑘𝑓. In this way, not only the 

time can be saved but also the accuracy could be guaranteed above 95%.  

4.1   Simple GANs for single network configuration 

For the first experiment, the simple GANs is considered to demonstrate its 

effectiveness for this application, and the need to use cGANs is highlighted. 

4.1.1   The pseudocode of simple GANs 

To stop the training procession at suitable epoch, the stopping criteria need to be 

combined with GANs properly. The following pseudocode is conducted successfully 

in this project.   

 

 

Algorithm 1 GANs with stopping criteria  

 

Input: training sets Data𝑡𝑟 , tolerant hhebyshev Distance 𝑑𝐶 , fixed data standard 

data𝑓𝑖𝑥𝑒𝑑  for the hhebyshev Distance comparison, learning rate α  , batch size for 

batch normalization and biggest epoch number E. 

for e in range (epoch number) do 

for i in iteration = training set size/batch size do 

(1) get samples x from  Data𝑡𝑟 in batch size; 

(2) get noise samples z; 

(3) tell Discriminator x is real data and G(z) is fake 
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data to get better Discriminator D𝑛𝑒𝑤; 

(4) the better Discriminator D𝑛𝑒𝑤 tell Generator how 

to create real data to get better Generator G𝑛𝑒𝑤 

(5)D = D𝑛𝑒𝑤, G = G𝑛𝑒𝑤 

end for 

compute hhebyshev distance d𝑒 from fake data of fixed 

part to real data’s data𝑓𝑖𝑥𝑒𝑑 

if d𝑒 <d𝐶  then 

stop the training 

end if 

end for 

4.1.2 The experiment in simple GANs 

To obtain the domain of stability with respect to the first inverter (for ease of 

representation on a 2-D plane), the values of 𝑘𝑓𝑖  and kvi for 𝑖 = 2, 3, 4, 5  are 

respectively fixed at 0.1% and 2% respectively, and the training data set is generated 

by varying kf1 and kv1 in a uniform distribution in the range  [0, 0.4]  and [0, 4] 

respectively. The training set size is chosen as 4000, with a batch size of 100 and 

learning rate of 8 ×  10−6 

 

.  

Figure 5 Real loss in simple GANs 
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We record the binary cross entropy loss of the Discriminator (fake data-0, real data-1), 

Generator and dc. The corresponding plots over a range of training epochs are shown 

in Figure 5～Figure 8. 

 

Figure 6 Fake loss in simple GANs 

 

Figure 7 G loss in simple GANs 

 

Figure 8 Chebyshev Distance in simple GANs 
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The goal of achieving 𝑑𝑐  <  𝜖 is first achieved at epoch=1130. Random noise is fed 

to the trained GANs to populate the stability region, which is obtained as shown in 

Figure 9. The theoretical stability region obtained from the traditional eigenvalue-

based method is also shown in the same figure. The data samples from the GANs are 

found to be 99.38% accurate. With further training, the GANs generate a better 

coverage of the stability region, as seen from Figure 10 corresponding to epoch 1900. 

Stability region obtained from 20000 samples from GANs is plotted in red. The 

theoretical stability region is shown in blue. The points identified by the GANs not in 

the actual stability region are shown in green 

 

Figure 9 Distribution of Generated Data from simple GANs(epoch=1130) 

 

Figure 10 Distribution of Generated Data from simple GANs(epoch=1900) 
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The need for cGANs is clear from this case because, if the different system 

configurations were used to generate the training data, then the output would be spread 

out among those configurations as well, generating a large hyperspace of stable 

operating conditions. However, since the application calls for selecting the appropriate 

droop settings for the present system configuration, cGANs can be leveraged, with the 

conditional label being the present Y matrix. 

 

4.2   Conditional GANs for multiple network configurations 

The use of cGANs is demonstrated considering the same system as before, along with 

certain contingencies. Assuming that there are two parallel feeders between Nodes 1-

2, 2-3 and 3-4, we consider the cases of loss of one of these parallel connections 

separately, yielding 3 additional distribution system configurations apart from the 

original system. 

4.2.1 The pseudocode of conditional GANs 

For cGANs, it is similar to simple GANs to combine with the stopping criteria except 

the data separation of label. The following pseudocode record the detail operation of 

cGANs.  

 

 

Algorithm 1 conditional GANs with stopping criteria  

 

Input: training sets Data𝑡𝑟 , tolerant hhebyshev Distance 𝑑𝐶 , fixed data standard 

data𝑓𝑖𝑥𝑒𝑑  for the hhebyshev Distance comparison, learning rate α  , batch size for 

batch normalization and biggest epoch number E. 

for e in range (epoch number) do 

for i in iteration = training set size/batch size do 

(1) get samples 𝑥 from  Data𝑡𝑟 in batch size; 

(2) separate samples 𝑥 into label 𝑥𝑙𝑎𝑏𝑒𝑙 samples (G) and parameter samples 

𝑥𝑑𝑎𝑡𝑎; 
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(3)  get noise samples z and the shape of every sample is same shape as a 

single 𝑥𝑑𝑎𝑡𝑎; 

(4) input the 𝑥𝑙𝑎𝑏𝑒𝑙 and 𝑥𝑑𝑎𝑡𝑎 or 𝑧 into the two neural networks at the same 

time, tell Discriminator 𝑥𝑑𝑎𝑡𝑎 is real data and G(z) is fake data to get 

better Discriminator Dnew; 

(5) the better Discriminator Dnew tell Generator how to create real data to 

get better Generator  Gnewtell Discriminator x is real data and G(z) is 

fake data to get better Discriminator D𝑛𝑒𝑤; 

(6)  the better Discriminator D𝑛𝑒𝑤 tell Generator how to create real data to 

get better Generator G𝑛𝑒𝑤 

(7) D = D𝑛𝑒𝑤, G = G𝑛𝑒𝑤 

end for 

compute hhebyshev distance d𝑒  from fake data of fixed part to real data’s 

data𝑓𝑖𝑥𝑒𝑑 

if d𝑒 <d𝐶  then 

stop the training 

end if 

end for 

 

 

4.2.2 The experiments in conditional GANs 

The structure of each training data vector is the same, covering 16000 samples equally 

distributed over the 4 system configurations. The batch size is set as 400. The 

Chebyshev distance is calculated every 20 iterations for each of the 4 configurations 

in the training data, by providing the appropriate conditional label to the cGANs and 

checking its output data vector. The maximum of all the configurations is considered 

to be the Chebyshev distance of the generated data. Similar to the simple GANs case, 

the Chebyshev distance, when smaller, indicates that the accuracy of the samples 

generated will be high, and that a wider region of the actual stability region will be 

populated. 
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The Chebyshev distance criterion is satisfied at epoch=1630, but in the interest of 

better populating the stability region, the training is carried out for 1907 epochs, and 

the relevant plots are shown in Figure 11~Figure14. 

 

Figure 11 Real loss in conditional GANs 

 

Figure 12 Fake loss in conditional GANs 

 

Figure 13 G loss in conditional GANs 
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Figure 14 Chebyshev Distance in conditional GANs 

From the Figure 11 to Figure 13, after some big fluctuations, the trend of these plots 

is very stable, almost one horizontal line. However, the generated data from Generator 

is changed considerably more than the change in that three loss pictures (Figure 10 ~ 

Figure 13). The Chebyshev distance (in Figure 14) has the clear indication of the 

degree of training completion for us. 

 

The corresponding cGANs are used to generate 20000 samples for each of the 4 system 

configurations to obtain their respective stability regions, which are shown in. It is 

clear that this is different for each system as expected, and that the accuracy of output 

samples is high, well above 97% for each case. 

 

For Figure15~Figure18, stability region (shown in red) for Inverter-1 identified using 

cGANs for 4 system configurations at epoch=1630, which is the first epoch satisfying 

the requirement of Chebyshev distance corresponding theoretical regions are indicated 

in blue, obtained from traditional numerical method. Green points denote erroneously 

projected points of stability by cGANs method. 
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Figure 15 System 1 in conditional GANs(epoch=1630) 

 

Figure 16 System 2 in conditional GANs (epoch=1630) 

 

Figure 17 System 3 in conditional GANs (epoch=1630) 
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Figure 18 System 4 in conditional GANs (epoch=1630) 

For Figure19~Figure22, stability region (shown in red) for Inverter-1 identified using 

cGANs for 4 system configurations at epoch=1907, which is the theoretical area being 

best populated by generated data. Corresponding theoretical regions are indicated in 

blue, obtained from traditional numerical method. Green points denote erroneously 

projected points of stability by cGANs method. 

 

It is evident to observe that the variation of generated data is getting large for the four 

system synchronously. And the theoretical regions are populated mostly for different 

systems. At the same time the above results also imply that the result with high 

accuracy and the result with best populated are not Asynchronous.  

 

 

Figure 19 System 1 in conditional GANs (epoch=1907) 
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Figure 20 System 2 in conditional GANs (epoch=1907) 

 

Figure 21 System 3 in conditional GANs (epoch=1907) 

 

Figure 22 System 4 in conditional GANs (epoch=1907) 
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CHAPTER 5: EXPERIMENTS ANALYSIS 

In this chapter, the experiments in last chapter are built to see the result of GANs’ 

application in power system. For the advantage of this method, it will be more obvious 

to be compered with the traditional method. For traditional method, we just check the 

stability of the points in the appointed region. While in the GANs, we can generate 

any number of stable datasets in a few seconds. 

 

Besides, the scalability of GANs in power system is also good. With the number of 

power system timely increasing, the stopping epoch is not increasing that quickly as 

the number of power system 

 

5.1   Comparison between conditional GANs and GANs  

To demonstrate the advantages of the proposed method visa-vis the traditional 

approach, both the traditional and cGANs models are used to generate 2000 sets of 

stable (kf1;  kv1) samples for each system configuration. The time for the sample 

generation is noted for each approach in Table II. First, the droop coefficients for 

Inverters 2-5 are kept constant, i.e., the stable hyperplane corresponding to the first 

inverter alone is generated. Additional, as is practically necessary, the sample 

generation is carried out varying the droop parameters of all the inverters to generate 

the whole stability hyperspace, and the corresponding runtime is also noted in the same 

Table. For this, the selections of kfi and kvi (i = 1; 2; 3; 4; 5) obey uniform distribution 

and their ranges are [1; 5] and [0:1; 0:5] respectively.  

 

Time comparison: 

Table 2 Time comparison for the traditional model with 4 system 

Approach 
Sample 

number 

𝑘𝑣𝑖  &𝑘𝑓𝑖,

𝑖 = 2~5 

System1 

Time(s) 

System2 

Time(s) 

System3 

Time(s) 

System4 

Time(s) 
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Traditional 20,000*4 Fixed 14.2336 16.5988 15.1759 14.8897 

Traditional 20,000*4 Varied 12.18833 12.3569 12.4277 12.4838 

 

Table 3 Time comparison for the conditional GANs model with 4 system 

Approach 
Sample 

number 

𝑘𝑣𝑖  &𝑘𝑓𝑖,

𝑖 = 2~5 

System1

Time(s) 

System2

Time(s) 

System3

Time(s) 

System4

Time(s) 

cGANs, learning 

rate=8 × 10−6 

epoch=1907 

20,000

*4 
Fixed 1.3480 1.3776 1.3343 1.2241 

cGANs, learning 

rate =2 × 10−5 

epoch=3994 

20,000

*4 
Varied 1.2838 1.2896 1.3115 1.2256 

 

From the above two tables, we can find the method of GANs is obviously faster than 

the traditional method. And for different conditions of data variation, like fixed data 

and varied data, the time of GANs are almost the same. While the time of traditional 

method has visible difference between fixed data and varied data. It indicates the 

method of GANs is not affected by the data’s variation if the Generator is trained 

successfully. 

 

Accuracy comparison: 

 

Table 4  Accuracy comparison for the traditional model with 4 system 

Approach 
Sample 

number 

𝑘𝑣𝑖  &𝑘𝑓𝑖,

𝑖 = 2~5 

System1 

accuracy 

System2 

accuracy 

System3 

accuracy 

System4 

accuracy 

Traditional 20,000*4 Fixed 28.94% 34,70% 29.12% 28.18% 

Traditional 20,000*4 Varied 0.22% 0.44% 0.25% 0.37% 
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Table 5  Accuracy comparison for the conditional GANs model with 4 system 

Approach 
Sample 

number 

𝑘𝑣𝑖 &𝑘𝑓𝑖, 

𝑖 = 2~5 

System 

accuracy  

System2 

accuracy  

System3 

accuracy 

System4 

accuracy 

cGANs, 

learning rate 

=8 × 10−6 

epoch=1907 

20,000

*4 
Fixed 98.43% 98.78% 97.85% 98.03% 

cGANs, 

learning rate 

=2 × 10−5 

epoch=3994 

20,000

*4 
Varied 100% 99.98% 99.97% 99.80% 

 

When the training data is changed from fixed data to varied data, the complexity of the 

data will be increased exponentially. While the learning rate of fixed data is too small 

to spend much time for varied data to get the good result of high accuracy. After some 

experiments we find the learning rate = 2 × 10−5 is better for the varied data. And 

when the epoch=3994, we could get the Generator whose four accuracy are all above 

95%. However, when we use the high learning rate, the accuracy of the epoch after 

3994 Generator is not continuously high, which has a lot of big fluctuations. 

 

For traditional model, it also can satisfy the accuracy of 100%, just recorded in the 

Table 6. However, the generating time of traditional model is so long that it spends 

more than 1 hour to just get the 4000 samples with varied data for each system. Though, 

the cGANs model cannot get the 100% accuracy every time for every system. The 

model of cGANs can complete the operation of extracting data with above 95% 

accuracy in 1.5 seconds. Thus, the traditional model waste much time compared with 

cGANs. 
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Table 6 Time comparison for the traditional model 

 with 100% accuracy for 4 systems 

Approach 
Sample 

number 

𝑘𝑣𝑖  &𝑘𝑓𝑖,

𝑖 = 2~5 

System1 

Time(s) 

System2 

Time(s) 

System3 

Time(s) 

System4 

Time(s) 

Traditional 4000*4 Fixed 14.3652 5.1766 5.9725 6.4392 

Traditional 4000*4 Varied 880.2613 479.8191 763.3919 655.5156 

 

It is observed that, for any particular system configuration, the traditional stability 

region determination approach takes well at least above 10s, but the cGANs runs for 

just over 1.2s, with good accuracy. This indicates the suitability of cGANs for practical 

deployment. 

 

5.2   Demonstration of scalability 

In industrial area, the scalability of one system is very important because it could 

reduce the workload obviously. In our case, the cGANs could instruct multiple 

different systems to complete training at the same time. 

 

Meanwhile, in cGANs, with the number of systems increasing, the epoch number of 

the beginning of the suitable interval just grows up slightly, which means our approach 

has good scalability to some degree. And we define that the stable interval is regarded 

as a set of epoch numbers, whose stable ratio is above 90% and the region could be 

populated 

 

The scalability of cGANs in determining the stability region stems from the fact that 

it can generate the plots corresponding to multiple system configurations without 

additional real-time computational complexity as compared to the simple GANs. 

 

However, the training process demands more sample data. Further, as the number of 

system configurations in the training dataset increases, the number of epochs for good 



Generative Adversarial Networks for Evaluating Power Grid Stability                        Chapter 5 

     

28  

accuracy, as well as for populating the entire stability region increases. It is evident 

from Table III that the required number of epochs does not increase significantly when 

the number of systems 

 

Table 7 The Epoch number VS number of Systems 

Number of systems 1 2 4 

Epoch number with accuracy firstly above 95% 680 695 750 

Epoch number with whole region populated 1035 1200 1280 
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CHAPTER 6: CONCLUSION AND 

FUTURE WORK 

6.1 Conclusion 

This work has demonstrated that the computational time requirements for online 

domain-of-stability characterization of networked droop-controlled sources can be met 

by cGANs. The cGANs based method can yield accurate stability range for the droop 

coefficient values, which can be effectively used by the supervisory controller to make 

real-time adjustments to the droop controllers for ensuring small-signal stability. Once 

the training of the cGANs is complete, the stability region can be obtained for various 

system configurations, and the scalability of the proposed method with respect to the 

required training epochs and number of possible system configurations has been 

demonstrated. Comparison of the running time between cGANs and the conventional 

method indicate that the former is nearly 10 times faster in generating the stability 

region for each system configuration. 

 

6.2 Future work 

6.2.1 Improvement of Algorithm 

For the model of GANs, there are also some shortcomings. The training procession is 

still very slow. And the stability of GANs is also very weak. There are also many 

researchers searching this area and a lot of results are presented, such as DCGANs 

(Deep Convolutional GANs) [15] and WGANs (Wasserstein GANs) [16].  

 

Besides the modifications of gradient, we also can focus on the parameter, learning 

rate, which is the “step” for the optimization in our problem. My opinion is to imitate 

the thought of BB-step in convex optimization. For every epoch, we select one suitable 
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learning rate. In this way, we can correct the parameter to not only save time but also 

guarantee not losing gradient very quickly. 

 

6.2.2 Improvement of equipment 

The computer we used in the experiments is not the best choice for deep learning. We 

also can implement the experiments on GPU server like Amazon Web Services (AWS). 

With the bigger space of RAM and better processing unit, we can add more data in 

training procession. Meanwhile, we can receive the result as soon as possible. 
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PUBLICATION 

The paper ‘Generative Adversarial Networks for Real-time Stability of Inverter-based 

Systems’, which is based on this report, is invested to the conference “PES Annual 

General Meeting 2019”. And it will be shown in the part A of Appendix. 
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APPENDIX 

A   Detail of Publication 
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B   Material  

To prove the strength of our method, we also add some previous unsuccessful 

experiments in appendix material. Though the results of them are not presented very 

well. However, they help us to get the better method at last. Thus, they are also an 

indispensable part in this report. 

B.1   Data of multi-system generated by simple GANs 

At the beginning, we find that the simple GANs could solve the single power system 

for us. And we also want to use it to solve multiple systems for us. We propose two 

methods. One is putting the data of the four different systems in one sample. The other 

one is setting the data of one system in one sample and putting the samples from 

different systems in one training set. In the following two sub-parts, we will show the 

results of them. 

 

B.1.1   Four systems in one sample 

To get the results from different systems in one training procession, the construction 

of the data in one sample is a good key to the problem.  We set the data of four systems 

in one sample and train the data in GANs. In this experiment, the size of data set is 

4000 and each sample contains 4 system. After training procession, which means it is 

stopped by the stopping criteria, there are 20000 fake data will be extracted. The results 

are scattered in the Figure 23 ~ Figure26, which are generated by epoch=2000. 

 

The accuracies of the four generated data are good and they are 99.38%, 98.34%, 

99.30 %, 97.07% respectively. But from the result, the variation of the result is very 

small. And I also verify the result of epoch=4000 for this experiment, the results are 

almost the same as the result of epoch=2000. Most values of data are centralized in 

one point. With the dimension of one sample growing up, the number of epochs needs 

to be exponentially increased. But for the cGANs, it does not need to increase the 

dimension of each sample for multi-system. 
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Figure 23 System 1 in simple GANs with four systems in one sample (epoch=2000) 

 

Figure 24 System 1 in simple GANs with four systems in one sample (epoch=2000) 

 

Figure 25 System 3 in simple GANs with four systems in one sample (epoch=2000) 
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Figure 26 System 4 in simple GANs with four systems in one sample (epoch=2000) 

B.1.2   Training set contains samples from different system 

In simple GANs, if we put the sample from different system in one training set, GANs 

model cannot get the information of the data from different systems. And when we 

generate the data by the Generator, we also cannot distinguish the data from which 

system we put in the training data.  In these conditions, we might use the method of 

K-means to solve it. Even if we do not know the generated data from which system we 

have input, we can cluster the generated data by their own feature of G and B, which 

are also created by the Generator. 

 

In this experiment, the size of this data set is 12,000 (3 systems * 4000), and the 

learning rate is also 8 × 10−6. The green scatters represent the unstable data and the 

red ones are stable data. Figure 26 ~ Figure 28 show the result of this experiment.  

 

Figure 27 Class 1 by K-means 
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Figure 28 Class 2 by K-means 

 

Figure 29 Class 3 by K-means 

But through the result shown in above pictures, the accuracies are so low that there are 

even no red ponits. And the shape of them are not similar to our goals. The reason of 

this phenomenon might be the simple GANs cannot distinguish the data sample from 

which system we have put in the training set. Thus, the simple GANs is not suitable to 

generate data for multi-system. The above two experiments also imply that cGANs is 

a better choice  

B.2   Neural networks with different label input 

In cGANs, the label is the key to distinguish the data sample. Because it is separated 

from the generated data, we can design the data of label allocated how much 

computation source in neural network. And we also do not have to do this work and 

let the neural networks allocate the source by themselves. Thus, we have two plans for 
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cGANs. One is the work of source allocation by human and the other one is by neural 

networks. 

 

For the first plan, the neural network of Generator and Discriminator need to 

concatenate the label data (y) with the training data (x) in the hidden layer. And we 

can assign different number of neurons to calculate x and y. In this way, there are more 

focus on training data and accelerate the training procession. But with the epoch 

increasing, there is much RAM allocated even if the memory of label is deleted by 

human.  

 

Figure 30 Generator's neural network code 

 

Figure 31 Discriminator's neural network code 
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While for the second plan, before the data are input into the neural networks, the 

training data (x) and label data (y) are concatenated firstly. There is no warning that 

RAM is not enough. And the results are also very good. Thus, this plan is applied in 

the algorithm finally.  

 


